Bioactivities of scent gland chemicals from Mictis fuscipes Hsiao (Hemiptera: Coreidae) on Solenopsis invicta Buren (Hymenoptera: Formicidae)

Author:

Zhong Jiamei12ORCID,Fox Eduardo G. P.3ORCID,Ling Siquan1ORCID,Yan Zheng4,Xu Jinzhu1,Yang Hua1,Hong Ziqiong1,Qin Changsheng1,Qiu Hualong1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry Guangzhou China

2. College of Life Science, Nanchang University Nanchang China

3. Programa de Pós‐Graduação em Ambiente e Sociedade (PPGAS) Universidade Estadual de Goiás (UEG) Quirinópolis Brazil

4. State Key Laboratory of Grassland Agro‐Ecosystems and College of Ecology Lanzhou University Lanzhou China

Abstract

AbstractBACKGROUNDGiven the chemical diversity within stink bugs scent glands, they can be convenient models for bioprospecting novel pest control products. Preliminary behaviour observations indicated that adult Mictis fuscipes stink bugs secrete liquid droplets when defending against Solenopsis invicta fire ants, killing them within minutes. Hence, this study aimed to analyse the chemical composition of the metathoracic scent gland secretions of M. fuscipes adults, as well as assess their biological activities against fire ants.RESULTSBioassaying fire ants against secretions of several local stink bugs confirmed that the defensive secretions of two Mictis species are significantly more lethal, where M. fuscipes was the most lethal. Volatiles chromatography analysis indicated the secretions of female and male M. fuscipes stink bugs contains 20 and 26 components, respectively, chiefly hexanoic acid and hexyl hexanoate. Five compounds were consistently present in the secretion of female adults: hexyl hexanoate, hexanoic acid, hexyl acetate, hexyl butyrate, and eugenol. These yielded a strong electrophysiological antennal (EAD) response from S. invicta workers, female alates and males, where hexyl acetate showed the strongest response. The combination of these five compounds proved strongly repellent to S. invicta. When tested singly, hexanoic acid, hexyl butyrate, hexyl hexanoate, and eugenol were repellent to S. invicta, but hexyl acetate seemed slightly attractive. Additionally, the same mixture of five components exhibited strong contact and fumigant toxicity towards S. invicta workers, eugenol being the strongest.CONCLUSIONDefensive chemicals of M. fuscipes exhibit robust biological activity against S. invicta and could inspire the development of biopesticides. © 2024 Society of Chemical Industry.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3