Long‐term forecasting of maritime economics index using time‐series decomposition and two‐stage attention

Author:

Kim Dohee1ORCID,Lee Eunju2,Kamal Imam Mustafa3ORCID,Bae Hyerim4ORCID

Affiliation:

1. Safe & Clean Supply Chain Research Center Pusan National University Busan Republic of Korea

2. Reliability assessment center FITI Testing & Research Institute Seoul Republic of Korea

3. Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology Institut Teknologi Sepuluh Nopember (ITS) Surabaya Indonesia

4. Department of Data Science, Graduate School of Data Science Pusan National University Busan Republic of Korea

Abstract

AbstractForecasting the maritime economics index, including container volume and Baltic Panamax Index, is essential for long‐term planning and decision‐making in the shipping industry. However, studies on container volume prediction are not sufficient, and the bulk freight index has highly fluctuating characteristics, which pose a challenge in long‐term prediction. This study proposes a new hybrid framework for the long‐term prediction of the maritime economics index. The framework consists of time‐series decomposition to break down a time‐series into several components (trend, seasonality, and residual), a two‐stage attention mechanism that prioritizes important variables to increase long‐term prediction accuracy and a long short‐term memory network that predicts and combines all components to derive the final predictive outcome. Extensive experiments are conducted using the container volume data, bulk freight index data, and various external variables. The proposed framework achieved a better predictive performance than existing time‐series methods, including conventional machine learning and deep learning‐based models, in the long‐term prediction of container volume and the Baltic Panamax Index. Hence, the proposed method can help in decision‐making through accurate long‐term predictions of the maritime economics index.

Funder

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3