A spatio‐temporal graph convolutional approach to real‐time load forecasting in an edge‐enabled distributed Internet of Smart Grids energy system

Author:

Liu Qi1,Pan Li1,Cao Xuefei2,Gan Jixiang1ORCID,Huang Xianming3,Liu Xiaodong4

Affiliation:

1. School of Software Nanjing University of Information Science and Technology Nanjing China

2. School of Cyber and Information Security Xidian University Xi'an China

3. School of Computer Science Hunan University of Technology Zhuzhou Hunan China

4. School of Computing Edinburgh Napier University Edinburgh UK

Abstract

SummaryAs the edge nodes of the Internet of Smart Grids (IoSG), smart sockets enable all kinds of power load data to be analyzed at the edge, which create conditions for edge calculation and real‐time (RT) load forecasting. In this article, an edge‐cloud computing analysis energy system is proposed to collect and analyze power load data, and a combination of graph convolutional network (GCN) with LSTM, called KGLSTM is used to achieve mid‐long term mixed sequential mode RT forecasting. In the proposed edge‐cloud framework, distributed intelligent sockets are regarded as edge nodes to collect, analyze and upload data to cloud services for further processing. The proposed KGLSTM network adopts a double branch structure. One branch extracts the data characteristics of mid‐short term time‐series data through an encoding–decoding LSTM module; the other branch extracts the data features of long term timing data through an adapted GCN. GCN is used to extract spatial correlations between different nodes. In addition, by combining a dynamic weighted loss function, the accuracy of peak forecasting is effectively improved. Finally, through various experimental indicators, this article shows that KGLSTM and weighted KGLSTM have achieved significant performance improvement over recent methods in mid‐long term time‐series forecasting and peak forecasting.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3