Proximity‐Encirclement of Multiple Exceptional Points in Non‐Hermitian Photonic Waveguides

Author:

Shi Ming‐Xuan1,Su Xue‐Mei1,Guo Miao‐Di2

Affiliation:

1. College of Physics Jilin University Changchun 130012 China

2. School of Sciences Xi'an Technological University Xi'an 710021 China

Abstract

AbstractConventionally, dynamical encirclement of exceptional points in non‐Hermitian systems is known to manifest a counterintuitive chiral state conversion. However, the prerequisite of such traits enclosing an exceptional point is broken when only encircling its proximity, preserving a still chiral switching. Research on the proximity‐encirclement in multistate systems is lacking. In this paper, a photonic‐waveguide‐array non‐Hermitian system is proposed to investigate the dynamics by encircling two exceptional points or their proximity. A series of encircling trajectories defined by the parametric equations are designed to steer the evolution of photonic modes in waveguides. The wave propagating along the waveguides is also simulated to capture this non‐Hermitian physics. The chiral behavior in proximity‐encirclement contrasts with the familiar encirclement of one exceptional point and exhibits the unexpected occurrence of nonadiabatic transitions. Furthermore, if two exceptional points are sufficiently encircled, the system will evolve to a stable final state earlier, as a symbol of the occurrence of the nonadiabatic transition. Such novel chiral conversion is maintained only if the encircling trajectories are located at adequate proximity.

Funder

Natural Science Foundation of Shaanxi Provincial Department of Education

Publisher

Wiley

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3