Synergy of machine learning and density functional theory calculations for predicting experimental Lewis base affinity and Lewis polybase binding atoms

Author:

Huynh Hieu1ORCID,Le Khanh1,Vu Linh1,Nguyen Trang1,Holcomb Matthew2,Forli Stefano2,Phan Hung13

Affiliation:

1. Fulbright University Vietnam Ho Chi Minh City Vietnam

2. Department of Integrative Structural and Computational Biology The Scripps Research Institute La Jolla California USA

3. Soka University of America Aliso Viejo California USA

Abstract

AbstractInvestigation of Lewis acid–base interactions has been conducted by ab initio calculations and machine learning (ML) models. This study aims to resolve two critical tasks that have not been quantitatively investigated. First, ML models developed from density functional theory (DFT) calculations predict experimental BF3 affinity with Pearson correlation coefficients around 0.9 and mean absolute errors around 10 kJ mol−1. The ML models are trained by DFT‐calculated BF3 affinity of more than 3000 adducts, with input features readily obtained by rdkit. Second, the ML models have the capability of predicting the relative strength of Lewis base binding atoms in Lewis polybases, which is either an extremely challenging task to conduct experimentally or a computationally expensive task for ab initio methods. The study demonstrates and solidifies the potential of combining DFT calculations and ML models to predict experimental properties, especially those that are scarce and impractical to empirically acquire.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3