Exploration of entropy analysis and viscous dissipation on radially convective flow of (Cu‐Al2O3:H2O) hybrid nanofluid over a stretching disk

Author:

Venkateswarlu Bhumarapu1ORCID,Narayana Panyam Venkata Satya2ORCID,Joo Sang Woo1

Affiliation:

1. School of Mechanical Engineering Yeungnam University Gyeongsan Republic of Korea

2. Department of Mathematics SAS, VIT Vellore India

Abstract

AbstractThe current research work deals with the impact of suction/injection on the thermally radiating convective flow generated by a nonlinear stretched disk. The energy equation is addressed by the presence of thermal radiation and the energy dissipative function. This work was carried out with the help of the Das and Tiwari (single‐phase nanofluid) models and the Maxwell Garnett and Brinkman nanofluid models for the analysis of entropy generation. In the present model, nanoparticles of copper (Cu) and alumina (Al2O3) are being used with water (H2O) as the base fluid. The governing nonlinear partial differential equations are transformed into ordinary differential equations with the assistance of appropriate similarity variables. These transformed equations are then solved using the bvp4c function, a built‐in function in MATLAB software. The investigation examines the influence of various factors on the velocity and temperature fields, entropy generation, skin friction, and heat transfer rate. The findings show that suction decreases velocity and temperature by 6.59%, while injection has the opposite effect. Viscous dissipation increases velocity by 5.13% and temperature by 17.94% in hybrid nanofluids. Higher Prandtl numbers reduce velocity and temperature by 6% in nanofluids but boost them by 5.45% and 18.81% in hybrid nanofluids with radiation growth. As volume fraction rises, Al2O3/H2O nanofluid speed falls by 5.37%, but Cu‐Al2O3/H2O hybrid nanofluid temperature increases by 13.09% and surface drag force increases by 12%. The entropy of the hybrid nanofluid increases by 5.84%, 8.19%, and 14.04% with Eckert number, suction, and Prandtl number but decreases by 10.08% with temperature difference. The Nusselt number of nanofluid decreases by 10.58% and 12.40% with Eckert number and radiation, but hybrid particles increase it by 10.31% with intensified Prandtl number. These findings offer valuable insights for potential applications of hybrid nanofluids in heat transfer and cooling systems.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3