Classifying Individuals With Rheumatic Conditions as Financially Insecure Using Electronic Health Record Data and Natural Language Processing: Algorithm Derivation and Validation

Author:

Chandler Mia T.12ORCID,Cai Tianrun23ORCID,Santacroce Leah3ORCID,Ulysse Sciaska3,Liao Katherine P.23ORCID,Feldman Candace H.23ORCID

Affiliation:

1. Boston Children's Hospital Boston Massachusetts

2. Harvard Medical School Boston Massachusetts

3. Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts

Abstract

ObjectiveWe aimed to examine the feasibility of applying natural language processing (NLP) to unstructured electronic health record (EHR) documents to detect the presence of financial insecurity among patients with rheumatologic disease enrolled in an integrated care management program (iCMP).MethodsWe incorporated supervised, rule‐based NLP and statistical methods to identify financial insecurity among patients with rheumatic conditions enrolled in an iCMP (n = 20,395) in a multihospital EHR system. We constructed a lexicon for financial insecurity using data from available knowledge sources and then reviewed EHR notes from 538 randomly selected individuals (training cohort n = 366, validation cohort n = 172). We manually categorized records as having “definite,” “possible,” or “no” mention of financial insecurity. All available notes were processed using Narrative Information Linear Extraction, a rule‐based version of NLP. Models were trained using the NLP features for financial insecurity using logistic, least absolute shrinkage operator (LASSO), and random forest performance characteristic and were compared with the reference standard.ResultsA total of 245,142 notes were processed from 538 individual patient records. Financial insecurity was present among 100 (27%) individuals in the training cohort and 63 (37%) in the validation cohort. The LASSO and random forest models performed identically and slightly better than logistic regression, with positive predictive values of 0.90, sensitivities of 0.29, and specificities of 0.98.ConclusionThe development of a context‐driven lexicon used with rule‐based NLP to extract data that identify financial insecurity is feasible for use and improved the capture for presence of financial insecurity with high accuracy. In the absence of a standard lexicon and construct definition for financial insecurity status, additional studies are needed to optimize the sensitivity of algorithms to categorize financial insecurity with construct validity.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3