Affiliation:
1. Jeju National University Department of Mechatronics Engineering Republic of Korea
2. Sukkur IBA University Department of Electrical Engineering Pakistan
3. QUEST Larkana Campus Department of Electronics Engineering Pakistan
Abstract
AbstractThe goal of microphysiological systems (MPS) is to replicate the relevant functionality of human organ tissues in in vitro. MPS technology so far has been used to simulate the various human organs and with the help of sensor integration in the MPS systems the biological activities of the organ to be modeled have been translated into data to be analyzed for further considerations. Most standard characterization approaches are intrusive and detrimental, and not feasible for online monitoring of cell cultures. Microfluidic biosensors, for instant, provide non‐invasive on‐line detection of biomarkers and molecules under targeted indicators with a high detection extent, successfully overcoming the limits of existing approaches. Microfluidic biosensors are rapidly being incorporated into MPS and employed for real‐time target identification as a result. In this review the focus is on emerging ways for miniaturizing and embedding biosensing systems in MPS also known as “organ‐on‐chip”. Cutting‐edge microfluidic biosensors are also covered with examples, showing their key benefits in monitoring MPS and highlighting current breakthroughs, before describing the remaining problems and anticipated future improvements in integrated microfluidic biosensors.
Funder
National Research Foundation of Korea
Subject
Industrial and Manufacturing Engineering,Filtration and Separation,Process Chemistry and Technology,Biochemistry,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献