Applications of Cellulose‐Based Nanomaterials for Sustainability and Therapeutics: A Review

Author:

Sariboga Ruken12ORCID,Sarioglu Omer Faruk12

Affiliation:

1. Istanbul Medeniyet University Department of Molecular Biology and Genetics Istanbul 34730 Turkey

2. Istanbul Medeniyet University Science and Advanced Technologies Research Center (BILTAM) Istanbul 34730 Turkey

Abstract

AbstractCellulose is a natural fibrous carbohydrate, is the main structural element of plant cell walls, and is the most abundant natural polymer found in the biosphere. Due to its abundance and chemical stability, it has been used as a raw material in various industries for thousands of years. Due to developments in nanotechnology, materials that are used in macroscale abundantly are also utilized for nanomaterial design, and cellulose‐based nanomaterials have gained more interest in recent years. The unique properties of cellulose‐based nanomaterials including their chemical stability, high degree of crystallinity, biocompatibility, biodegradability, and tunability of their chemical (e.g., surface modification) and physical (e.g., shape) properties make them good candidates for functional nanomaterial design. This review brings advances in cellulose‐based nanomaterials for application in two major fields, sustainability and therapeutics.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3