Affiliation:
1. College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing 100029 China
2. State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
3. Shanghai KraussMaffei Machinery Co., Ltd. Shanghai 200215 China
Abstract
In this article, boron nitride (BN)/carbon nanotube (CNT)/boron nitride (BN) (BCB) film of sandwich structure is prepared by vacuum‐assisted filtration. Compared with the thermal conductivity (λ) of BNs–cellulose nanocrystals (CNCs) (BC) film, the λ of sandwich structured BCB films with the same thickness (The preparation process consists of one layer of BC and one layer of CNTs–CNCs (CC) until the completion of three layers of filtration) has been significantly improved. Then, the polydimethylsiloxane (PDMS) matrix is infiltrated into the BCB films by the ultrasonic‐assisted forced infiltration method. Prepared BN/CNT/BN/PDMS (BCBP) composites with sandwich structure have excellent λ and mechanical performance. When the weight ratio of BNs to CNCs is 20:1, the λ of BCBP20:1 attains 5.253 W (m K)−1, compared with other thermally conductive composites with the same thickness (0.1 mm), it has an obvious increase. Besides, the dielectric properties and mechanical flexibility of BCBP are also systematically analyzed. This sandwich structure is prepared in such a method that the BCBP will not cause short circuits in electronic devices under high temperatures while having high λ.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献