Manufacturing Process of Low‐Contamination Titanium Foam as Implant Material for Cranioplasty Based on Replica Technique

Author:

Quadbeck Peter1ORCID,Jehring Ulrike2,Böhm Hans-Dietrich2,Füssel Alexander3,Standke Gisela3

Affiliation:

1. Peter Osypka Institute for Medical Engineering Offenburg University of Applied Sciences Badstr. 24 77562 Offenburg Germany

2. Branch Lab Dresden Fraunhofer Institute for Manufacturing Technologies and Advanced Materials IFAM Winterbergstr. 28 01277 Dresden Germany

3. Department Carbide Ceramics and Cellular Ceramics Fraunhofer Institute for Ceramic Technologies and Systems IKTS Winterbergstr. 28 01277 Dresden Germany

Abstract

The article investigates the development of a manufacturing route for highly porous titanium foams suitable for craniofacial surgery applications, particularly in cranioplasties. The study focuses on the polyurethane replication method for foam production and emphasizes reducing residual gas content, as it significantly affects the mechanical properties and suitability for approval of the foams. Various factors such as starting materials, solvent debinding, heating schedules, and hydrogen atmosphere are analyzed for their impact on residual gas content. It is shown that significant reductions in residual gas content can only be achieved by reworking each step of the process. A combination of initial solvent debinding of the PU template with dimethyl sulphoxide, reduction of suspension additives, use of coarser Gd. 1 powders, and an integrated debinding and sintering process under partial hydrogen atmosphere achieves a significant reduction in residual gas content. This way, the potential for producing titanium foams that comply with relevant standards for craniofacial implants is demonstrated.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3