Digital Light Processing 3D‐Printed Porous Yttria‐Stabilized Zirconia with High‐Thermal Shock Resistance

Author:

Khakzad Moein1,Mosadegh Mahdi1,Sepasi Zahra2,Mehrdad Ehsan1,Alsup Zachary1,Minary‐Jolandan Majid1ORCID

Affiliation:

1. Department of Mechanical Engineering The University of Texas at Dallas Richardson TX 75080 USA

2. Alan G. MacDiarmid NanoTech Institute The University of Texas at Dallas Richardson TX 75080 USA

Abstract

Advances in vat photopolymerization 3D printing have the potential to significantly improve the production of ceramic materials for electrochemical energy devices. Solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) necessitate high‐resolution ceramic manufacturing methods, as well as precisely controlled porosity (≈20–40%) for optimal gas transport. Achieving a balance between this porosity and mechanical integrity, especially under thermal stress, remains a challenge. Herein, the successful fabrication of porous yttria‐stabilized zirconia (YSZ) ceramics using vat photopolymerization 3D printing is demonstrated, achieving porosities ranging from 6% to 40% and corresponding grain sizes of ≈80–550 nm. It is found that 3D‐printed YSZ with ≈33% porosity exhibited a Weibull modulus of m = 5.3 and a characteristic strength of over 36 MPa. In the investigation, it is further revealed that these ceramics can withstand thermal shock up to 500 °C, retaining over 70% of their flexural strength. This remarkable performance suggests significant potential for 3D‐printed porous YSZ in SOFCs and SOECs, paving the way for potential improved efficiency, reduced fabrication costs, and innovative designs in these next‐generation clean energy technologies.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3