Affiliation:
1. Guizhou Key Laboratory of Materials Mechanical Behavior and Microstructure College of Materials and Metallurgy Guizhou University Guiyang 550025 P. R. China
2. National & Local Joint Engineering Laboratory for High-Performance Metal Structure Material and Advanced Manufacturing Technology Guizhou University Guiyang 550025 China
Abstract
By conducting the numerical and experimental analysis, the influence of heat input on the microstructures and mechanical properties of laser welding GH4169 bolt assembly is systematically investigated. The weld formation, temperature field, and residual stress distribution during laser welding by using the finite element modeling are consistent with experimental results. The numerical simulation results show that the increase of heat input imparts lower residual stresses and higher temperature gradient. During the process of laser welding, the steepest temperature gradient and the peak residual stress arise in the fusion zone (FZ). In addition, the dissolution of γ″ and γ′ toward the fusion line increases in heat affected zone (HAZ), but only Laves phase is observed in FZ. With increasing heat input from 24 to 48 J mm−1, the ultimate tensile strength of welded joints decreases. Both the lowest microhardness values and tensile failure of GH4169 alloy laser welded joint are in FZ. Herein, it is that the relationship among the heat input, microstructures, and mechanical properties of GH4196 bolt assembly in laser welding is systematically established, which will be of guiding significance for the selection of welding parameters in aerospace.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献