Bessel‐Beam Direct Write of the Etch Mask in a Nano‐Film of Alumina for High‐Efficiency Si Solar Cells

Author:

Katkus Tomas1,Ng Soon Hock1,Mu Haoran1,Le Nguyen Hoai An1,Stonytė Dominyka2,Khajehsaeidimahabadi Zahra1,Seniutinas Gediminas1,Baltrukonis Justas3,Ulčinas Orestas3,Mikutis Mindaugas3,Sabonis Vytautas3,Nishijima Yoshiaki4,Rienäcker Michael5,Römer Udo5,Krügener Jan6,Peibst Robby56,John Sajeev7,Juodkazis Saulius128ORCID

Affiliation:

1. Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia

2. Laser Research Center Physics Faculty Vilnius University Saulėtekio Ave. 10 10223 Vilnius Lithuania

3. Altechna R&D Mokslininku str. 6A 08412 Vilnius Lithuania

4. Department of Electrical and Computer Engineering Graduate School of Engineering Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan

5. Next Generation Solar Cells Institut für Solarenergieforschung Hameln (ISFH) Am Ohrberg 1 31860 Emmerthal Germany

6. Institute of Electronic Materials and Devices Leibniz Universität Hannover Schneiderberg 32 30167 Hannover Germany

7. Department of Physics University of Toronto 60 St. George Street Toronto ON M5S 1A7 Canada

8. WRH Program International Research Frontiers Initiative (IRFI) Tokyo Institute of Technology Nagatsuta‐cho, Midori‐ku Yokohama Kanagawa 226‐8503 Japan

Abstract

Large surface area applications such as high efficiency >26% solar cells require surface patterning with 1–10 μm periodic patterns at high fidelity over areas (before up scaling to ) to perform at, or exceed, the Lambertian (ray optics) limit of light trapping. Herein, a pathway is shown to high‐resolution sub‐1 μm etch mask patterning by ablation using direct femtosecond laser writing performed at room conditions (without the need for a vacuum‐based lithography approach). A Bessel beam is used to alleviate the required high surface tracking tolerance for ablation of 0.3–0.8 μm diameter holes in 40 nm alumina –mask at high writing speed, 7.5 cm s−1; a patterning rate 1 cm2 per 20 min. Plasma etching protocol was optimized for a zero‐mesa formation of photonic‐crystal‐trapping structures and smooth surfaces at the nanoscale level. The maximum of minority carrier recombination time of 2.9 ms was achieved after the standard wafer passivation etch; resistivity of the wafer was 3.5 Ω cm. Scaling up in area and throughput of the demonstrated approach is outlined.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3