Machine Learning‐Informed Predictive Design and Analysis of Electrohydrodynamic Printing Systems

Author:

Singh Sachin Kumar1,Rai Nikhil1,Subramanian Arunkumar1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering College of Engineering University of Illinois at Chicago Chicago 60607 USA

Abstract

Electrohydrodynamic (EHD) processes are promising techniques for manufacturing nanoscopic products with different shapes (such as thin films, nanofibers, 2D/3D nanostructures, and nanoparticles) and materials at a low cost using simple equipment. A key challenge in their adoption by nonexperts is the requirement of enormous time and resources in identifying the optimum design/process parameters for the underlying material and EHD system. Machine learning (ML) has made exciting advancements in predictive modeling of different processes, provided it is trained on high‐quality datasets at appropriate volumes. This article extends the suitability of such ML‐enabled approaches to a new technological domain of EHD spraying and drop‐on‐demand printing. Different ML models like ridge regression, random forest regression, support vector regression, gradient boosting regression, and multilayer perceptron are trained and their performance using evaluation metrics like RMSE and R2_score is examined. Tree‐based algorithms like gradient boosting regression are found to be the most suitable technique for modeling EHD processes. The trained ML models show substantially higher accuracy (average error < 5%) in replicating these nonlinear processes as compared to previously reported scaling laws (average error ≈ 42%) and are well suited for predictive modeling/analysis of the underlying EHD system and process.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3