Asymptotic tracking control of uncertain MIMO nonlinear systems with extended condition for controllability

Author:

Zhou Bing1ORCID,Huang Xiucai1ORCID,Song Yongduan1ORCID,Shen Zhixi1

Affiliation:

1. School of Automation Chongqing University Chongqing China

Abstract

AbstractFor uncertain multiple‐inputs multi‐outputs nonlinear systems, it is nontrivial to achieve asymptotic tracking due to the intrinsic coupling among inputs, while the controllability conditions in most existing methods are rather restrictive or even impractical especially when unexpected actuator faults are involved. In this article, we focus on extending such controllability condition by resorting to the existence (instead of a priori knowledge) of some feasible auxiliary matrix, upon which a robust adaptive control scheme is first presented in the absence of actuator faults that is not only able to achieve asymptotic tracking even in the presence of non‐parametric uncertainties with all the closed‐loop signals globally ultimately uniformly bounded, but also able to deal with a larger class of system models. Furthermore, for the case with intermittent actuator faults, we develop a fault‐tolerant control scheme with extended condition for controllability that is able to accommodate such faults automatically without using any fault detection or fault diagnosis unit. The effectiveness and benefits of the proposed method are verified via simulation on robotic systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3