Vertical and horizontal variations in phytoplankton chlorophyll a in response to a looping super typhoon

Author:

Chen Ying123ORCID,Zhao Hui1234,Han Guoqi5

Affiliation:

1. College of Chemistry and Environmental Science Guangdong Ocean University Zhanjiang China

2. Research Center for Coastal Environmental Protection and Ecological Resilience Guangdong Ocean University Zhanjiang China

3. Cooperative Research Center for Nearshore Marine Environmental Change Guangdong Ocean University Zhanjiang China

4. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China

5. Fisheries and Oceans Canada, Institute of Ocean Sciences Sidney British Columbia Canada

Abstract

AbstractPrevious studies suggested that the increase in surface chlorophyll a (Chl a) is due to nutrient upwelling or to the upward mixing of the subsurface Chl a maximum layer under the influence of tropical cyclones, while often ignoring the influence of the subsurface Chl a minimum layer and horizontal advection on Chl a. In this study, we show the important roles of the upward mixing of the subsurface Chl a minimum layer, horizontal advection, as well as the upwelling of the subsurface Chl a maximum layer, taking a looping super typhoon “Saola” in the northwest Pacific in August 2023 as an example. The temporal and spatial changes of Chl a and its physical properties were investigated by combining satellite, Argo, reanalysis, and model data. The results indicate that the combined effects of the upwelling of the subsurface Chl a maximum layer caused by wind stress curls and concurrent near‐surface wind mixing were responsible for the surface Chl a increase in the looping area during the typhoon, while the 13% increase in the depth‐integrated Chl a after the typhoon is mainly due to the nutrients brought by upwelling and subsequent biochemical processes. In the edge area affected by the typhoon, the surface Chl a decrease during the typhoon was mainly due to the upward mixing of the subsurface Chl a minimum layer (the effect of upwelling in this area is relatively weak). Furthermore, the horizontal advection led to a continuous surface Chl a decrease in the edge area after the typhoon. These findings could enhance understanding of Chl a dynamics post‐tropical cyclones, aiding marine ecosystem prediction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3