Antioxidant properties of bovine liver protein hydrolysates and their practical application in biphasic systems

Author:

Arslan Betul12ORCID,Xiong Youling L3,Soyer Ayla1

Affiliation:

1. Department of Food Engineering, Faculty of Engineering Ankara University Ankara Turkey

2. Department of Food Engineering, Faculty of Engineering Erzincan Binali Yıldırım University Erzincan Turkey

3. Department of Animal and Food Science University of Kentucky Lexington KY USA

Abstract

AbstractBACKGROUNDThe influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C.RESULTSRadical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid‐reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration.CONCLUSIONThis study highlights the potential applications of animal by‐products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3