Preparation of Ti4O7/h‐BN self‐supported ceramic photoelectrode and its photoelectrocatalytic performance for water purification

Author:

Li Shanshan1ORCID,Gong Yanan1,Hossain Md Azharul1,Jiang Zeqi1,Zhang Jiarong2,Wang Guowen1,Fu Yinghuan1,Wang Pengyuan1,Song Yu1,Ma Hongchao1

Affiliation:

1. School of Light Industry & Chemical Engineering Dalian Polytechnic University Dalian P. R. China

2. Yingkou Urban Rural Construction and Public Utilities Center Yingkou P. R. China

Abstract

AbstractThe construction of high‐efficiency self‐supported ceramic photoelectrode based on ideal semiconductor materials is essential for achieving effective degradation of pollutants by photoelectrocatalysis (PEC) technology. Herein, a Ti4O7/h‐BN composite ceramic photoelectrode with a unique microstructure was fabricated by a step‐by‐step calcination process and used in PEC water pollution remediation. The PEC activity of Ti4O7 ceramic photoelectrode could be enhanced by introducing hexagonal boron nitride (h‐BN) nanoparticles on the surface. The most optimized Ti4O7/h‐BN photoelectrode exhibited the decolorization rate of active brilliant blue KN‐R at about 97.79% in 30 min. The PEC activities could remain stable during five degradation cycles. The excellent photoelectrocatalytic performance of Ti4O7/h‐BN ceramic photoelectrode could be attributed to the low Tafel slope, low charge transfer resistance, large electrochemical active area, and excellent photo‐generated carrier separation efficiency. A type‐II heterojunction was formed between the Ti4O7 and h‐BN, which caused more effective carrier separation and enhanced the generation of dominant active species •O2− and h+. This work provided a mature synthesis strategy of Ti4O7/h‐BN self‐supported ceramic photoelectrodes with excellent practical application prospects to achieve superior PEC performance for water purification.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3