Super‐resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning

Author:

Hou Yemao1ORCID,Canul‐Ku Mario2ORCID,Cui Xindong3ORCID,Zhu Min14ORCID

Affiliation:

1. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences Beijing China

2. Virtual University of the State of Guanajuato, Purísima del Rincón Guanajuato Mexico

3. The Key Laboratory of Orogenic Belts and Crustal Evolution School of Earth and Space Sciences, Peking University Beijing China

4. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing China

Abstract

AbstractMicropaleontologists use the fine structures of microfossils to extract evolutionary information. These structures could not be directly observed with the naked eye. Recently, paleontologists resort to computed tomography (CT) images to mine the information, and pursue higher resolution CT images with in‐depth research. Therefore, we propose a new model, weighted super‐resolution generative adversarial network (WSRGAN), for the super‐resolution reconstruction of CT images. The model proposed herein (WSRGAN) obtained higher LPIPS (0.0757) on the experimental dataset, compared with Bilinear (0.4289), Bicubic (0.4166), EDSR (0.2281), WDSR (0.2640), and SRGAN (0.0815). WSRGAN meets the requirements of paleontologists for reconstructing fish microfossils. We hope that more super‐resolution reconstruction methods based on deep learning could be applied to paleontology and achieve better performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Spectroscopy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3