Affiliation:
1. Department of Pediatrics, Faculty of Medicine Hokkaido University Sapporo Japan
2. MRC Mitochondrial Biology Unit University of Cambridge Cambridge UK
3. KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation Kobe Gakuin University Kobe Japan
4. Research Center for Locomotion Biology Kobe Gakuin University Kobe Japan
5. Faculty of Health Sciences Kobe Tokiwa University Kobe Japan
Abstract
AbstractBarth syndrome (BTHS) is an X‐linked disorder characterized by cardiomyopathy, skeletal myopathy, and 3‐methylglutaconic aciduria. The causative pathogenic variants for BTHS are in TAZ, which encodes a putative acyltransferase named tafazzin and is involved in the remodeling of cardiolipin in the inner mitochondrial membranes. Pathogenic variants in TAZ result in mitochondrial structural and functional abnormalities. We report a case of infantile BTHS with severe heart failure, left ventricular noncompaction, and lactic acidosis, having a missense c.640C>T (p.His214Tyr) variant in TAZ, which is considered a pathogenic variant based on the previously reported amino acid substitution at the same site (c.641A>G, p.His214Arg). However, in this previously reported case, heart function was compensated and not entirely similar to the present case. Silico prediction analysis suggested that c.640C>T could alter the TAZ messenger RNA (mRNA) splicing process. TAZ mRNAs in isolated peripheral mononuclear cells from the patient and in vitro splicing analysis using minigenes of TAZ found an 8 bp deletion at the 3′ end of exon 8, which resulted in the formation of a termination codon in the coding region of exon 9 (H214Nfs*3). These findings suggest that splicing abnormalities should always be considered in BTHS.
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献