Remediation of charged organic pollutants—binding motifs for highly efficient water cleaning with nanoparticles

Author:

Eigen Andreas1,Schmidt Victoria1,Sarcletti Marco1,Freygang Selina1,Hartmann‐Bausewein Andreas1,Schneider Vanessa1,Zehetmeier Anna1,Mauritz Vincent2,Müller Lukas1,Gaß Henrik1,Rockmann Linda1,Crisp Ryan W.2,Halik Marcus1

Affiliation:

1. Organic Materials & Devices Institute of Polymer Materials Department of Materials Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany

2. Chemistry of Thin Film Materials Department of Chemistry and Pharmacy Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstrasse 1 Erlangen Germany

Abstract

AbstractMany charged organic molecules behave as persistent and hazardous pollutants with harmful effects on human health and ecosystems. They are widely distributed related to their charged molecular structure that provides water solubility. In order to track the fate and behavior of such pollutants, charged dyes with specific absorption in the visible spectra serve as convenient model compounds. We provide a platform of smart adsorbers that efficiently remediate positively and negatively charged dyes (crystal violet and Amaranth) from water. Metal oxide nanoparticles serve as a core with an intrinsically large surface area. The surface potential was tuned towards positive or negative by decorating the cores with self‐assembled monolayers of dedicated long‐chained phosphonic acid derivatives. Selective remediation of the dyes was obtained with corresponding oppositely charged core‐shell nanoparticles. Mixed dye solution can be cleaned by a cascade approach or by applying both particle systems simultaneously. The removal efficiency was determined as a function of particle concentration via UV‐spectroscopy. The results of remediation experiments at different pH values and using superparamagnetic iron oxide nanoparticle cores lead to a simple process with recycling capability.

Funder

Deutsche Bundesstiftung Umwelt

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3