Green Synthesis of Silver Nanoparticles With Cyclosorus dentatus and Nephrolepis biserrata and Their Antioxidant, Anti‐Inflammatory Studies

Author:

Chick Christian Nanga12ORCID,Meva Francois Eya'ane23ORCID,Kedi Phillippe Belle Ebanda24,Usuki Toyonobu1ORCID

Affiliation:

1. Department of Materials and Life Sciences Faculty of Science and Technology Sophia University Chiyoda‐ku Tokyo Japan

2. Laboratory of Innovative Nanostructured Material (NANO: C) Faculty of Medicine and Pharmaceutical Sciences The University of Douala Douala Cameroon

3. Institute for Organic Chemistry and Structural Chemistry Heinrich‐Heine‐University Dusseldorf Dusseldorf Germany

4. Nanosciences African Network iThemba LABS‐National Research Foundation Cape Town South Africa

Abstract

ABSTRACTThis study examined the synthesis of silver nanoparticles (SNPs) with aqueous extracts of Cyclosorus dentatus and Nephrolepis biserrata fronds and the evaluation of their biological activities. Mixing of AgNO3 solution and the aqueous extracts resulted in color change, indicating the formation of SNPs. UV‐Vis spectroscopy analysis gave a surface plasmon resonance (SPR) peak at approximately 420 nm, confirming the presence of the synthesized SNPs. Infrared analysis showed C‐O, N‐O, and C‐C vibrations or stretching and aliphatic vibrations of hydrocarbon chains of the synthesized SNPs. x‐Ray diffraction (XRD) analysis indicated the SNPs were face‐centered, cubic, and crystalline in nature, with crystallite sizes. The scanning electron microscopy (SEM) shows the aggregation of the spherical shape nanoparticles. The SNPs significantly reduced phosphomolybdenum and captured H2O2 with respective IC50 values of 61.55 and 29.03 µg/mL for C. dentatus SNP (SNP‐Cd), and 92.61 and 9.07 µg/mL for N. biserrata SNP (SNP‐Nb), respectively. In terms of albumin‐denaturing activity, the SNPs gave an IC50 value of 21.20 µg/mL for SNP‐Cd and 7.18 µg/mL for SNP‐Nb. Thus, this work confirmed that SNP‐Cd and SNP‐Nb are potential therapeutic agents for treating oxidative stress, inflammatory problems, and related diseases.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3