Environmental variation structures reproduction and recruitment in long‐lived mega‐herbivores: Galapagos giant tortoises

Author:

Blake Stephen12345ORCID,Cabrera Freddy6,Cruz Sebastian6,Ellis‐Soto Diego27,Yackulic Charles B.8ORCID,Bastille‐Rousseau Guillaume59ORCID,Wikelski Martin27,Kuemmeth Franz10,Gibbs James P.5,Deem Sharon L.11

Affiliation:

1. Biology Department Saint Louis University Saint Louis Missouri USA

2. Max Planck Institute for Animal Behavior Radolfzell Germany

3. WildCare Institute Saint Louis Zoo Saint Louis Missouri USA

4. Whitney Harris World Ecology Center University of Missouri‐St. Louis Saint Louis Missouri USA

5. Department of Environmental and Forest Biology State University of New York, College of Environmental Science and Forestry Syracuse New York USA

6. Charles Darwin Foundation Galapagos Ecuador

7. Department of Biology University of Konstanz Konstanz Germany

8. US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA

9. Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA

10. E‐obs GmbH Grünwald Germany

11. Institute for Conservation Medicine Saint Louis Zoo Saint Louis Missouri USA

Abstract

AbstractMigratory, long‐lived animals are an important focus for life‐history theory because they manifest extreme trade‐offs in life‐history traits: delayed maturity, low fecundity, variable recruitment rates, long generation times, and vital rates that respond to variation across environments. Galapagos tortoises are an iconic example: they are long‐lived, migrate seasonally, face multiple anthropogenic threats, and have cryptic early life‐history stages for which vital rates are unknown. From 2012 to 2021, we studied the reproductive ecology of two species of Galapagos tortoises (Chelonoidis porteri and C. donfaustoi) along elevation gradients that coincided with substantial changes in climate and vegetation productivity. Specifically, we (1) measured the body and reproductive condition of 166 adult females, (2) tracked the movements of 33 adult females using global positioning system telemetry, and monitored their body condition seasonally, (3) recorded nest temperatures, clutch characteristics, and egg survival from 107 nests, and (4) used radiotelemetry to monitor growth, survival, and movements of 104 hatchlings. We also monitored temperature and rainfall from field sites, and remotely sensed primary productivity along the elevation gradient. Our study showed that environmental variability, mediated by elevation, influenced vital rates of giant tortoises, specifically egg production by adult females and juvenile recruitment. Adult females were either elevational migrants or year‐round lowland residents. Migrants had higher body condition than residents, and body condition was positively correlated with the probability of being gravid. Nests occurred in the hottest, driest parts of the tortoise's range, between 6 and 165 m elevation. Clutch size increased with elevation, whereas egg survival decreased. Hatchling survival and growth were highest at intermediate elevations. Hatchlings dispersed rapidly to 100–750 m from their nests before becoming sedentary (ranging over <0.2 ha). Predicted future climates may impact the relationships between elevation and vital rates of Galapagos tortoises and other species living across elevation gradients. Resilience will be maximized by ensuring the connectivity of foraging and reproductive areas within the current and possible future elevational ranges of these species.

Funder

National Science Foundation

Max Planck Institute for Ornithology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3