Understanding the Performance of (Ni−Fe−Co−Ce)Ox‐Based Water Oxidation Catalysts via Explainable Artificial Intelligence Framework

Author:

Rossener Regonia Paul1ORCID,Pelicano Christian Mark2ORCID

Affiliation:

1. Department of Computer Science College of Engineering University of the Philippines Diliman Philippines

2. Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany

Abstract

AbstractAmong the most active oxygen evolution reaction (OER) catalysts, mixed metal oxides based on Ni, Fe, and Co metals are recognized as economical yet excellent replacements for RuO2 and IrOx. However, tuning and searching for optimal compositions of multi–element–compound electrocatalysts is a big challenge in catalysis research. Conventional materials screening experiments and theoretical simulations are labor–intensive and time–consuming. Machine learning offers a promising paradigm for accelerating electrocatalyst research and simultaneously understanding composition–activity correlation. Herein, we introduce an Explainable AI (XAI) framework for predicting the electrocatalytic performance of OER catalysts. By integrating the robust Random Forest (RF) model for machine learning with the Shapley Additive Explanations (SHAP) method for model explanation, we achieved accurate predictions of the overpotential for various compositions of (Ni−Fe−Co−Ce)Ox catalysts (R2=0.8221). More importantly, we obtained valuable insights into how each metal and their interactions influence the overpotential of the catalysts. Our results highlight the versatility of the RF model with SHAP in identifying the optimal composition of (Ni−Fe−Co−Ce)Ox catalysts for electrocatalytic oxygen evolution, showing its potential applicability across various catalyst synthesis methods. Finally, we anticipate that this work will lead to exciting possibilities in designing highly active multi–element compound electrocatalysts with the aid of explainable AI.

Funder

Max-Planck-Gesellschaft

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3