The Effect of Slicer Infill Pattern on the Electrochemical Performance of Additively Manufactured Electrodes

Author:

Bernalte Elena1ORCID,Crapnell Robert D.1ORCID,Messai Ouissal M. A.12,Banks Craig E.1ORCID

Affiliation:

1. Faculty of Science and Engineering Manchester Metropolitan University Chester Street Manchester M1 5GD United Kingdom

2. Department of Physical Measurements Sorbonne Paris North University Place du 8 Mai 1945 93200 Saint-Denis France

Abstract

AbstractIn this work we report the dramatic effects that changing the infill pattern has on the electrochemical performance of an additively manufactured electrode made from commercial filament. Electrodes were produced using six different slicing patterns and imaged to confirm how the infill pattern altered the working electrode surface. These electrodes were then electrochemically characterised against the near‐ideal outer sphere redox probe [Ru(NH3)6]3+, the common inner sphere probe [Fe(CN)6]3−, and then used for the electroanalytical determination of acetaminophen. It was found that changing the infill pattern had a dramatic effect on the electrochemical performance of the electrodes. Over the course of the manuscript, it can be seen that Aligned Rectilinear and Rectilinear infill patterns perform consistently well and offer good reproducibility. On the other hand, Concentric infill pattern had noticeably poor inter‐electrode reproducibility and the Hilbert Curve infill was one of the worst performing electrodes in many categories. For future work in this field, we recommend the infill pattern is always reported within the experimental section to allow other researchers to repeat work properly. Additionally, when optimising an electroanalytical sensing platform, we encourage researchers to optimise the infill pattern as it has direct influence on the analytical parameters.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Electrochemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3