Advances in Strain‐Induced Noble Metal Nanohybrids for Electro‐Catalysis: From Theoretical Mechanisms to Practical Use

Author:

Chen Zhao‐Yang1ORCID,Li Ling‐Tong1,Zhao Feng‐Ming1,Zhu Ying‐Hong1,Chu You‐Qun1

Affiliation:

1. International Sci. & Tech. Cooperation Base of Energy Materials and Application State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis College of Chemical Engineering Zhejiang University of Technology Hangzhou City Zhejiang 310014 China

Abstract

AbstractIn response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3