Affiliation:
1. School of Chemical Engineering University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
2. School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
Abstract
AbstractElectrocrystallization is a promising method for controlled charge‐transfer complex (CTC) deposition on microfabricated electrodes for gas sensing applications. However, there remains a gap in our understanding of CTC electrodeposition. In this study, we focus on investigating the electrocrystallization of cobalt tetracyanoquinodimethane (Co‐TCNQ) on a microdisk electrode to elucidate and control the process. Leveraging the microelectrode technique, we conduct steady‐state measurements to observe nucleation and crystal growth dynamics, particularly in the early stages of electrocrystallization. We use cyclic voltammetry and chronoamperometry to examine Co‐TCNQ electrocrystallization under various electrolytic conditions. We identify electrocrystallization kinetics, ranging from electrokinetic to diffusion‐limited growth, governing the nucleation and growth of Co‐TCNQ crystals. Notably, we pinpoint the applied overpotential and precursor concentration range necessary for a single nucleation site on the microelectrode. Moreover, we demonstrate control over crystal orientation and morphology. Our findings reveal a nonclassical growth pathway for Co‐TCNQ crystals characterized by oriented attachment of small crystallites along the conductive long axis. Importantly, electrodeposited Co‐TCNQ on patterned microelectrodes exhibits selective sensing capabilities for nitrogen dioxide gas. Overall, this study sheds light on CTC electrodeposition through a proof‐of‐concept demonstration involving Co‐TCNQ electrodeposition on microelectrodes, presenting potential applications across diverse materials.
Funder
Asian Office of Aerospace Research and Development
Australian Research Council
University of New South Wales
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献