Deep Radiomics Features of Median Nerves for Automated Diagnosis of Carpal Tunnel Syndrome With Ultrasound Images: A Multi‐Center Study

Author:

Mohammadi Afshin1,Torres‐Cuenca Thomas2,Mirza‐Aghazadeh‐Attari Mohammad3,Faeghi Fariborz4,Acharya U. Rajendra567,Abbasian Ardakani Ali4ORCID

Affiliation:

1. Department of Radiology, Faculty of Medicine Urmia University of Medical Science Urmia Iran

2. Department of Physical Medicine and Rehabilitation National University of Colombia Bogotá Colombia

3. Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine Johns Hopkins University Baltimore Maryland USA

4. Department of Radiology Technology, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran

5. School of Mathematics, Physics and Computing University of Southern Queensland Springfield Queensland Australia

6. Department of Biomedical Engineering, School of Science and Technology SUSS University Singapore

7. Department of Biomedical Informatics and Medical Engineering Asia University Taichung Taiwan

Abstract

ObjectivesUltrasound is widely used in diagnosing carpal tunnel syndrome (CTS). However, the limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator‐dependent nature of ultrasound imaging. Therefore, in this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep‐radiomics features.MethodsWe have used 416 median nerves from 2 countries (Iran and Colombia) for the development (112 entrapped and 112 normal nerves from Iran) and validation (26 entrapped and 26 normal nerves from Iran, and 70 entrapped and 70 normal nerves from Columbia) of our models. Ultrasound images were fed to the SqueezNet architecture to extract deep‐radiomics features. Then a ReliefF method was used to select the clinically significant features. The selected deep‐radiomics features were fed to 9 common machine‐learning algorithms to choose the best‐performing classifier. The 2 best‐performing AI models were then externally validated.ResultsOur developed model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.910 (88.46% sensitivity, 88.46% specificity) and 0.908 (84.62% sensitivity, 88.46% specificity) with support vector machine and stochastic gradient descent (SGD), respectively using the internal validation dataset. Furthermore, both models consistently performed well in the external validation dataset, and achieved an AUC of 0.890 (85.71% sensitivity, 82.86% specificity) and 0.890 (84.29% sensitivity and 82.86% specificity), with SVM and SGD models, respectively.ConclusionOur proposed AI models fed with deep‐radiomics features performed consistently with internal and external datasets. This justifies that our proposed system can be employed for clinical use in hospitals and polyclinics.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3