High‐velocity impact resistance of the carbon fiber composite grid sandwich structures

Author:

Wei Shiyi1,Guo Zhangxin1ORCID,Niu Weijing2,Chai Gin Boay3,Tai Zhe1,Li Yongcun14

Affiliation:

1. College of Mechanical and Vehicle Engineering Taiyuan University of Technology Taiyuan China

2. Shanxi Polytechnic College Taiyuan China

3. School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore Singapore

4. National Demonstration Center for Experimental Mechanics Education Taiyuan University of Technology Taiyuan China

Abstract

AbstractThe carbon fiber composite grid sandwich structure represents an innovative category of lightweight composite sandwich structures, showcasing remarkable attributes including reduced weight, high‐specific strength, exceptional specific stiffness, and robust design flexibility. Using ABAQUS, the high‐velocity impact performance of carbon fiber composite grid sandwich structure is numerically simulated. This study delved into examining the impact patterns arising from various factors, including the equivalent density, height, and geometric configuration of the core layer. Additionally, the effects of the impact punch's initial velocity, size, and impact position on the high‐speed impact resistance performance of the carbon fiber composite grid sandwich structure were explored. The fracture absorption work of the structure and the kinetic energy attenuation rate of the impact punch are positively correlated with the equivalent density, height of the structural core layer, as well as the initial velocity and dimensions of the impact punch. Notably, the square carbon fiber composite grid sandwich structure was most significantly influenced by the equivalent density of the core layer, while the mixed carbon fiber composite grid sandwich structure was most sensitive to variations in core layer height and punch size. When impacted at the intersection of the ribs, compared with the central position between the two ribs, the structure shows enhanced fracture absorption energy and greater impact kinetic energy attenuation rate.Highlights The structure was modeled based on the interlocking assembly process. The high‐velocity impact resistance of the structure was studied. Different structural parameters were designed for the core layer to study. The initial velocity, size and impact position of the punch were involved.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3