Effect of printing path on compressive properties of 3D printed continuous fiber composite negative Poisson's ratio structure

Author:

Liu Baosheng1,Lou Ruishen1,Liu Xin1,Yao Yunxiang1,Li Huimin12ORCID

Affiliation:

1. Institute of Advanced Structure Technology Beijing Institute of Technology Beijing China

2. Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and Structures Beijing Institute of Technology Beijing China

Abstract

AbstractIn this work, continuous fiber reinforced thermoplastic negative Poisson's ratio structures (CFNPRSs) with rotating squares are fabricated by 3D printing based on a symmetrical orthogonal and one‐stoke path planning method. The influences of the printing path on the Poisson's ratio, elastic modulus and energy absorption of the structures under compression are systematically researched. The distribution of continuous fiber at the hinge has a great influence on the compression behavior of the structures. As the number of cross laps of continuous fibers at the hinge increases, the negative Poisson's ratio effect decreases while the elastic modulus and energy absorption increase. The printed CFNPRSs with no cross lap have the most obvious negative Poisson's ratio effect, with an average Poisson's ratio of −0.61. A comparative study on Poisson's ratio of the 3D printed polylactic acid negative Poisson's ratio structures (PANPRSs) is carried out, and the results show that the PANPRSs cannot achieve the negative Poisson's ratio effect because the insufficient stiffness of the printed rotation units violates the rigid assumption in theoretical model. Furthermore, the printed CFNPRSs with a lower relative density of 0.18 has an even better negative Poisson's ratio effect than the existing fiber‐reinforced auxetic structures fabricated by 3D printing. This work can provide a significant reference for the preparation of lightweight functional structures using 3D printing.Highlights The CFNPRSs with rotating squares are prepared by 3D printing technique. The path planning of the fiber at the hinge affects the properties of CFNPRSs. The negative Poisson's ratio of CFNPRSs is more obvious than that of PANPRSs. The relative density and Poisson's ratio of CFNPRSs have obvious advantages.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3