Event‐triggered adaptive tracking control for nonlinear systems with input saturation and unknown control directions

Author:

Chang Ru12ORCID,Hou Ting‐Ting1,Bai Zhi‐Zhong1,Sun Chang‐Yin23ORCID

Affiliation:

1. School of Automation and Software Engineering Shanxi University Taiyuan China

2. School of Automation Southeast University Nanjing China

3. School of Artificial Intelligence Anhui University Hefei China

Abstract

AbstractThis article is concerned with event‐triggered adaptive tracking control design of strict‐feedback nonlinear systems, which are subject to input saturation and unknown control directions. In the design procedure, a smooth nonlinear function is employed to approximate the saturation function so that the controller can be designed under the framework of backstepping. The Nussbaum gain technique is employed to address the issue of the unknown control directions. A predetermined time convergent performance function and a nonlinear mapping technique are introduced to guarantee that the tracking error can converge in the predetermined time with a fast convergence rate and a high accuracy. Then the event‐triggered adaptive prescribed performance tracking control strategy is proposed, which not only ensures the boundedness of all the closed‐loop signals and the convergence of tracking error but also reduces the communication burden from the controller to the actuator. At last, the simulation study further tests the availability of the proposed control strategy.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3