Design of an effective air electrode using highly porous carbon‐aerogel on carbon cloth for oxygen intake toward improved reaction kinetics of aluminum‐air battery

Author:

Pandey Anant Prakash1ORCID,Rani Bharti1,Sharma Minakshi1,Yadav Jitendra Kumar1,Saini Priyanka1,Shalu 2,Dixit Ambesh1ORCID

Affiliation:

1. Advanced Material and Devices Laboratory (A‐MAD), Department of Physics Indian Institute of Technology Jodhpur Rajasthan India

2. Sharda School of Basic Sciences & Research Sharda University Greater Noida Uttar Pradesh India

Abstract

AbstractOne of the greatest alternatives to Li‐ion batteries is an Al‐air battery as it is more economically feasible and less toxic together with relatively better electrochemical performance. The design of the cell and the selection of electrode for improved electrochemical performance are the primary factors influencing the performance of the Al‐air battery. The present study focuses on designing an efficient air cathode host to lengthen the battery's lifespan using highly porous carbon aerogel. Initially, the carbon aerogel (CA) material is synthesized using sol‐gel polymerization process and characterized using XRD, RAMAN, SEM, and BET. The synthesized CA is used to fabricate the electrode stacking using the in‐house‐built Al‐air cell. The performance of carbon aerogel coated on carbon cloth as air cathode has been evaluated using a galvanostatic discharge of the assembly at different current rates, and the specific capacity is recorded. The highest specific capacity observed is ~683 mAh g−1 at 2.551 mA cm−2 current density. The acquired results demonstrate the superiority of the present electrodes material compared to currently used air electrode. The improved electrochemical stability and the robust pore network in CA allow oxygen to pass through the cathode end for chemical reaction. Overall, this enhances kinetics and makes the interactions between oxygen and aluminum easier to generate higher current.

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3