Drought‐stress induced changes of fatty acid composition affecting sunflower grain yield and oil quality

Author:

Ghaffari Mehdi1ORCID,Gholizadeh Amir2ORCID,Rauf Saeed3,Shariati Farnaz1

Affiliation:

1. Oil Crops Research Department, Seed and Plant Improvement Institute Agricultural Research Education and Extension Organization (AREEO) Karaj Iran

2. Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center Agricultural Research Education and Extension Organization (AREEO) Gorgan Iran

3. Department of Plant Breeding and Genetics, College of Agriculture University of Sargodha Sargodha Pakistan

Abstract

AbstractWater availability is the most important key factor affecting sunflower productivity and its oil quality. This study investigated the effect of drought stress on sunflower fatty acids and its effects on grain yield and related components. Thirteen sunflower hybrids were evaluated as randomized complete block design with three replications under normal and drought stress conditions in Karaj, Iran, during 2 years (2019 and 2020). Drought stress was imposed by water withholding during the reproductive stage. Drought stress accelerated the maturity of sunflower and caused a reduction in grain yield (30%), grains weight (11%), and grain numbers/head (22%) compared with normal irrigation. Means of grain yield were 2.7 and 1.8 t/ha under normal and drought stress conditions respectively. Grain numbers/head had higher correlation with grain yield than grains weight under both conditions. Among the fatty acids, the contents of palmitic and linoleic acids were increased (11% and 3%, respectively) while stearic and oleic acids were decreased (6% and 11%). The results indicated that sunflower hybrids benefit from the escape strategy differentially to adapt drought stress condition. However, this adaptation changes sunflower fatty acid profile that reduces grain yield and quality of sunflower oil in Karaj conditions in Iran. In order to achieve the higher yields and higher oil quality, it is necessary to avoid drought stress in sunflower production fields.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3