Quantitative mapping of renal oxygen consumption using pseudo‐continuous arterial spin labeling and quantitative susceptibility mapping in humans

Author:

Jung Yujin1ORCID,Ahn Hyun‐Seo1ORCID,Park Sung‐Hong1ORCID

Affiliation:

1. Department of Bio and Brain Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea

Abstract

AbstractPurposeTo propose a new method for quantitatively mapping the renal metabolic rate of oxygen (RMRO2) and to evaluate the proposed method using a caffeine challenge.Theory and MethodsPseudo‐continuous arterial spin labeling (pCASL) and QSM sequences were used to obtain MR images in the kidney. Six healthy volunteers were scanned on caffeine and control days. The pCASL and QSM images were registered using DICOM information and rigid translation. The Fick principle was applied to estimate RMRO2. The results on caffeine and control days were compared to evaluate the capability of the proposed method to estimate renal oxygen consumption. A paired t‐test was used to assess the statistical significance.ResultsEstimated renal blood flow (RBF), QSM, and RMRO2 maps were consistent with those reported in the literature. RMRO2 values were higher than the cerebral metabolic rate of oxygen (CMRO2) and were significantly reduced on the caffeine days compared to the control days, consistent with findings from non‐MRI literature.ConclusionThe feasibility of measuring renal oxygen consumption using pCASL and QSM images was demonstrated. To the best of our knowledge, this work provides quantitative maps of renal oxygen consumption in humans for the first time. The results were consistent with the literature, including the statistically significant reduction in renal oxygen consumption with caffeine challenge. These findings suggest the potential utility of our technique in measuring renal oxygen consumption noninvasively, especially for patients with complications associated with contrast agents.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3