Automated MRI‐based segmentation of intracranial arterial calcification by restricting feature complexity

Author:

Wang Xin1ORCID,Canton Gador2,Guo Yin3,Zhang Kaiyu3,Akcicek Halit4,Yaman Akcicek Ebru4ORCID,Hatsukami Thomas5,Zhang Jin6,Sun Beibei6,Zhao Huilin6,Zhou Yan6,Shapiro Linda7,Mossa‐Basha Mahmud2,Yuan Chun24ORCID,Balu Niranjan2

Affiliation:

1. Department of Electrical and Computer Engineering University of Washington Seattle Washington

2. Vascular Imaging Lab, Department of Radiology University of Washington Seattle Washington

3. Department of Bioengineering University of Washington Seattle Washington

4. Department of Radiology and Imaging Sciences University of Utah Salt Lake City Utah

5. Department of Surgery University of Washington Seattle Washington

6. Department of Radiology Renji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China

7. Paul G. Allen School of Computer Science and Engineering University of Washington Seattle Washington

Abstract

AbstractPurposeTo develop an automated deep learning model for MRI‐based segmentation and detection of intracranial arterial calcification.MethodsA novel deep learning model under the variational autoencoder framework was developed. A theoretically grounded dissimilarity loss was proposed to refine network features extracted from MRI and restrict their complexity, enabling the model to learn more generalizable MR features that enhance segmentation accuracy and robustness for detecting calcification on MRI.ResultsThe proposed method was compared with nine baseline methods on a dataset of 113 subjects and showed superior performance (for segmentation, Dice similarity coefficient: 0.620, area under precision‐recall curve [PR‐AUC]: 0.660, 95% Hausdorff Distance: 0.848 mm, Average Symmetric Surface Distance: 0.692 mm; for slice‐wise detection, F1 score: 0.823, recall: 0.764, precision: 0.892, PR‐AUC: 0.853). For clinical needs, statistical tests confirmed agreement between the true calcification volumes and predicted values using the proposed approach. Various MR sequences, namely T1, time‐of‐flight, and SNAP, were assessed as inputs to the model, and SNAP provided unique and essential information pertaining to calcification structures.ConclusionThe proposed deep learning model with a dissimilarity loss to reduce feature complexity effectively improves MRI‐based identification of intracranial arterial calcification. It could help establish a more comprehensive and powerful pipeline for vascular image analysis on MRI.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3