Surgical parameters influence paediatric knee kinematics and cartilage stresses in anterior cruciate ligament reconstruction: Navigating subject‐specific variability using neuromusculoskeletal‐finite element modelling analysis

Author:

Dastgerdi Ayda Karimi1ORCID,Esrafilian Amir2ORCID,Carty Christopher P.13,Nasseri Azadeh1,Barzan Martina1,Korhonen Rami K.2,Astori Ivan3,Hall Wayne4,Saxby David John1

Affiliation:

1. Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE) Griffith University Gold Coast Queensland Australia

2. Department of Technical Physics University of Eastern Finland Kuopio Finland

3. Department of Orthopedics Children's Health Queensland Hospital and Health Service Brisbane Queensland Australia

4. School of Engineering and Built Environment, Mechanical Engineering and Industrial Design Griffith University Gold Coast Queensland Australia

Abstract

AbstractPurposeAnterior cruciate ligament (ACL) rupture is increasingly common in paediatric and adolescent populations, typically requiring surgical ACL reconstruction (ACLR) to restore knee stability. However, ACLR substantially alters knee biomechanics (e.g., motion and tissue mechanics) placing the patient at elevated risk of early‐onset knee osteoarthritis.MethodsThis study employed a linked neuromusculoskeletal (NMSK)‐finite element (FE) model to determine effects of four critical ACLR surgical parameters (graft type, size, location and pre‐tension) on tibial articular cartilage stresses in three paediatric knees of different sizes during walking. Optimal surgical combinations were defined by minimal kinematic and tibial cartilage stress deviations in comparison to a corresponding intact healthy knee, with substantial deviations defined by normalized root mean square error (nRMSE) > 10%.ResultsResults showed unique trends of principal stress deviations across knee sizes with small knee showing least deviation from intact knee, followed by large‐ and medium‐sized knees. The nRMSE values for cartilage stresses displayed notable variability across different knees. Surgical combination yielding the highest nRMSE in comparison to the one with lowest nRMSE resulted in an increase of maximum principal stress on the medial tibial cartilage by 18.0%, 6.0% and 1.2% for small, medium and large knees, respectively. Similarly, there was an increase of maximum principal stress on lateral tibial cartilage by 11.2%, 4.1% and 12.7% for small, medium and large knees, respectively. Knee phenotype and NMSK factors contributed to deviations in knee kinematics and tibial cartilage stresses. Although optimal surgical configurations were found for each knee size, no generalizable trends emerged emphasizing the subject‐specific nature of the knee and neuromuscular system.ConclusionStudy findings underscore subject‐specific complexities in ACLR biomechanics, necessitating personalized surgical planning for effective restoration of native motion and tissue mechanics. Future research should expand investigations to include a broader spectrum of subject‐specific factors to advance personalized surgical planning.Level of EvidenceLevel III.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3