Improving the reliability of machine learned potentials for modeling inhomogeneous liquids

Author:

Fazel Kamron1ORCID,Karimitari Nima2ORCID,Shah Tanooj1ORCID,Sutton Christopher2ORCID,Sundararaman Ravishankar1ORCID

Affiliation:

1. Materials Science and Engineering Rensselaer Polytechnic Institute Troy New York USA

2. Department of Chemistry and Biochemistry University of South Carolina Columbia South Carolina USA

Abstract

AbstractThe atomic‐scale response of inhomogeneous fluids at interfaces and surrounding solute particles plays a critical role in governing chemical, electrochemical, and biological processes. Classical molecular dynamics simulations have been applied extensively to simulate the response of fluids to inhomogeneities directly, but are limited by the accuracy of the underlying interatomic potentials. Here, we use neural network potentials (NNPs) trained to ab initio simulations to accurately predict the inhomogeneous responses of two distinct fluids: liquid water and molten NaCl. Although NNPs can be readily trained to model complex bulk systems across a range of state points, we show that to appropriately model a fluid's response at an interface, relevant inhomogeneous configurations must be included in the training data. In order to sufficiently sample appropriate configurations of such inhomogeneous fluids, we develop protocols based on molecular dynamics simulations in the presence of external potentials. We demonstrate that NNPs trained on inhomogeneous fluid configurations can more accurately predict several key properties of fluids—including the density response, surface tension and size‐dependent cavitation free energies—for liquid water and molten NaCl, compared to both empirical interatomic potentials and NNPs that are not trained on such inhomogeneous configurations. This work therefore provides a first demonstration and framework to extract the response of inhomogeneous fluids from first principles for classical density‐functional treatment of fluids free from empirical potentials.

Funder

U.S. Department of Energy

National Energy Research Scientific Computing Center

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3