The effect of vertical motions on damage accumulation on concrete gravity dams

Author:

Soysal Berat Feyza1ORCID,Arici Yalin2ORCID,Ay Bekir Özer3ORCID

Affiliation:

1. Department of Civil Engineering Cankaya University Ankara Turkey

2. Department of Civil Engineering Middle East Technical University Ankara Turkey

3. Department of Architecture Middle East Technical University Ankara Turkey

Abstract

AbstractThe effect of vertical ground motions on the seismic response of dams has long been a concern in the seismic design and evaluation of concrete gravity dams. The guidelines regarding the use of vertical motions in time history analysis (THA) are not clear due to the complexity of the effect as well as the large uncertainty in the motion selection process. The goal of this study is to assess the significance of vertical motions’ effects on concrete gravity dams considering the relevant variability due to ground motion, system frequency response as well as the shaking level. To this end, a carefully selected ground motion set providing realistic vertical(V)/horizontal(H) loading was used in nonlinear THAs of three different systems with different modal properties. In order to evaluate the intensity of shaking on the vertical motions’ effect, the responses were calculated at different seismic levels corresponding to operation, design, and maximum shaking levels. Along with traditional demand parameters commonly employed in assessing seismic response, cracking on the base and at the upstream face of the monolith was adopted as demand measures using a model capable of yielding discrete cracking on the system. The effect of vertical motions was quantified by comparing the response of H + V to H only shaking. The results show the vertical shaking can significantly affect upstream cracking for the operation or design level earthquakes, the effect increasing for larger dams.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3