Application of ultramicrotomy and infrared imaging to the forensic examination of automotive paint

Author:

Zhong Haoran1,Donkor Elizabeth1,Whitworth Lisa2,White Collin G.1,Dahal Kaushalya Sharma1,Fasasi Ayuba3,Hancewicz Thomas M.4,Uba Franklin3,Lavine Barry K.1ORCID

Affiliation:

1. Department of Chemistry Oklahoma State University Stillwater Oklahoma USA

2. OSU Microscopy Laboratory Oklahoma State University Stillwater Oklahoma USA

3. Energy and Research Innovation Phillips 66 Company Bartlesville Oklahoma USA

4. TMH Associates Whitehall Pennsylvania USA

Abstract

AbstractIn several previously published studies, Lavine and coworkers have demonstrated that infrared (IR) spectra from all layers of an intact multilayered automotive paint chip can be collected in a single analysis by scanning across each layer of a cross sectioned paint chip using a Fourier transform IR imaging microscope. Applying alternating least squares to the spectral data, the IR spectrum of each layer of an original equipment manufacturer paint chip can be extracted from a line map of the spectral image. To further develop this imaging technique for automotive paint analysis, the capability to cross section “small” paint chips (1 mm or less) using an ultramicrotome has been incorporated into our current imaging methodology. An ultramicrotome does not require epoxy or other embedding media for the paint chip and will simplify the analysis. However, extracting the IR spectra for each layer of an original equipment manufacturer paint chip by alternating least squares can be problematic for thin peels (less than one micron thickness), necessitating the use of target testing factor analysis to determine whether a specific layer is present in the line map and modified alternating least squares to recover the IR spectrum of the layer. Using a new sample preparation technique and the appropriate multivariate curve resolution methods, high quality IR spectra of the layers of a modern automotive paint system can be obtained from paint fragments that are smaller than what is practical to analyze by conventional Fourier transform IR spectroscopy.

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3