Recent Advances on Diarylethene‐Based Photoswitching Materials: Applications in Bioimaging, Controlled Singlet Oxygen Generation for Photodynamic Therapy and Catalysis

Author:

Bag Sayan Kumar1,Pal Adwitiya1,Jana Subhendu1,Thakur Arunabha1ORCID

Affiliation:

1. Department of Chemistry Jadavpur University Kolkata 700032 West Bengal India

Abstract

AbstractPhotoswitching materials have emerged as a promising class of compounds that possess manifold interesting properties rendering their widespread use from photoswitches, regulators to optoelectronic devices, security technologies and biochemical assays. Diarylethenes (DAE) constitute one such category of photoswitchable compounds, where the key features of stability, photoisomerization wavelengths, quantum yield and variability in the photoisomers significantly depend on their derivatization. The last decade has witnessed a surge in the engagement of DAEs in different areas of chemical and biological sciences, like biomarkers, controlled generation of singlet oxygen, photo‐dynamic therapy, chemosensing, catalysis, etc. In all the cases, the photoswitchability of DAE is the principal regulating factor along with its emission properties according to the appended groups. Previous reviews on applications of DAE‐based systems did not predominantly cover all the aspects of biological and industrial implementations. They have covered only one field of application either in the biological science or in the synthetic aspect or photochromic aspects only. This review is a coalition of all those aspects in last six years. Here the variation of properties of the DAE systems with respect to structural diversifications have been discussed in detail along with their potential applications in bioimaging of cells, regulating singlet oxygen generation for photodynamic therapy and catalysis of organic reactions, and their future prospects. A tabular presentation of the photophysical properties of DAE derivatives adds to the basic understanding of this subject at a glance. We hope that this cumulative collection of contemporary research on DAE, as presented in this review, will enhance the knowledge of the readers about synthetic design anticipating their properties well in advance, and will certainly motivate researchers to generate new DAE architectures with superior chemical and biological properties in future.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3