Preparation of aqueous silane‐graphene oxide co‐modified cellulose fibers/natural rubber composites via flash extrusion dispersion process

Author:

Li Xiangxu12ORCID,Wu Lei3,Lai Qingxiang12ORCID,Xu Yifan12,Wang He12,Wang Chuansheng12,Bian Huiguang12

Affiliation:

1. School of Mechatronics Engineering Qingdao University of Science and Technology Shandong China

2. National Engineering Laboratory of Advanced Tire Equipment and Key Materials Qingdao University of Science and Technology Qingdao China

3. National Key Laboratory of Aerospace Chemical Power Xiangyang China

Abstract

AbstractCellulose fibers were modified via aqueous silane‐graphene oxide (GO) coordination by flash drying and extrusion dispersion process. The adsorption of GO reduced the polarity of the cellulose fiber surface and attenuated the agglomeration effect between the cellulose fibers, thus facilitating the dispersion of fibers in the rubber matrix. Adding aqueous 3‐aminopropylsilane oligomer (8150) incorporated active sites on the surface of cellulose fibers, thereby improving the interfacial binding properties of cellulose nano fibers (CNFs) and natural rubber (NR). After blending the modified CNFs with NR latex, high‐temperature flocculation was performed using an atomised flash device. Finally, CNF/NR was pre‐dispersed through a twin‐screw extruder, after which a CNF/NR masterbatch with excellent performance was prepared. Experimental results revealed that composites prepared using GO‐8150 via the flash drying‐twin‐screw dispersion process exhibited excellent dispersion characteristics, processing properties, mechanical properties, rolling resistance, wear resistance, and heat generation properties. Compared with traditional dry mixing, the composites prepared by flash drying‐twin‐screw dispersion process showed a 16.95% increase in tensile strength, 16.07% increase in 300% constant elongation, 19.01% reduction in abrasion consumption, 42.26% reduction in rolling resistance, and a reduction in the Payne effect. This study offers an efficient and environmentally friendly method for the high‐value utilization of natural fibers and the preparation of NR composites with excellent properties, while providing a green and nonpolluting modification process with no acidic liquid discharge.Highlights GO‐8150 reduces the polarity of the fibers and promotes dispersion. The flash extrusion dispersion process achieves green flocculation. 42% lower rolling resistance for rubber composites.

Funder

Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3