Affiliation:
1. School of Mechatronics Engineering Qingdao University of Science and Technology Shandong China
2. National Engineering Laboratory of Advanced Tire Equipment and Key Materials Qingdao University of Science and Technology Qingdao China
3. National Key Laboratory of Aerospace Chemical Power Xiangyang China
Abstract
AbstractCellulose fibers were modified via aqueous silane‐graphene oxide (GO) coordination by flash drying and extrusion dispersion process. The adsorption of GO reduced the polarity of the cellulose fiber surface and attenuated the agglomeration effect between the cellulose fibers, thus facilitating the dispersion of fibers in the rubber matrix. Adding aqueous 3‐aminopropylsilane oligomer (8150) incorporated active sites on the surface of cellulose fibers, thereby improving the interfacial binding properties of cellulose nano fibers (CNFs) and natural rubber (NR). After blending the modified CNFs with NR latex, high‐temperature flocculation was performed using an atomised flash device. Finally, CNF/NR was pre‐dispersed through a twin‐screw extruder, after which a CNF/NR masterbatch with excellent performance was prepared. Experimental results revealed that composites prepared using GO‐8150 via the flash drying‐twin‐screw dispersion process exhibited excellent dispersion characteristics, processing properties, mechanical properties, rolling resistance, wear resistance, and heat generation properties. Compared with traditional dry mixing, the composites prepared by flash drying‐twin‐screw dispersion process showed a 16.95% increase in tensile strength, 16.07% increase in 300% constant elongation, 19.01% reduction in abrasion consumption, 42.26% reduction in rolling resistance, and a reduction in the Payne effect. This study offers an efficient and environmentally friendly method for the high‐value utilization of natural fibers and the preparation of NR composites with excellent properties, while providing a green and nonpolluting modification process with no acidic liquid discharge.Highlights
GO‐8150 reduces the polarity of the fibers and promotes dispersion.
The flash extrusion dispersion process achieves green flocculation.
42% lower rolling resistance for rubber composites.
Funder
Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province