Pattern scaling the parameters of a Markov‐chain gamma‐distribution daily precipitation generator

Author:

Kemsley Sarah Wilson1ORCID,Osborn Timothy J.1,Dorling Stephen R.2,Wallace Craig3

Affiliation:

1. Climatic Research Unit, School of Environmental Sciences University of East Anglia Norwich UK

2. School of Environmental Sciences University of East Anglia Norwich UK

3. EarthSystemData Ltd The Enterprise Centre Norwich UK

Abstract

AbstractGeneral circulation models (GCMs) are the most sophisticated tools at our disposal for studying future climates, but there are limitations to overcome. These include resolutions that may be too coarse for impact assessments, limited or zero availability of some policy‐relevant scenarios, and limited time‐series length for assessing the risk of extreme events. We illustrate how these limitations can be addressed by combining a stochastic precipitation generator (SPG) with pattern scaling (PS) of its key parameters. Computationally inexpensive, SPG parameters can be perturbed to generate time‐series representative of weather under a future climate with high spatial and temporal resolution. If the SPG parameter perturbations are derived directly from GCM simulations projections can only be made for scenarios already simulated by the GCM. Instead, we obtain the parameter perturbations using PS, facilitating emulation of scenarios not necessarily explicitly simulated by the GCM, and where we scale perturbations approximately linearly with global temperature change. PS is commonly applied to estimate perturbations in the mean of climate variables, but rarely to higher‐order parameters as we demonstrate here. We apply PS for the first time, globally, to the parameters of a daily, first‐order Markov‐chain gamma‐distribution SPG using output from the IPSL‐CM6A‐LR GCM to perturb an SPG fitted to observed data from two stations in diverse climates (Santarém, Brazil and Reykjavik, Iceland) to illustrate this novel approach. We produce time series corresponding to a range of GWLs and demonstrate the capability of the combined SPG‐PS approach to study local‐scale, future daily precipitation characteristics, climate and subsequent risk of extreme weather events.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3