Recent Advances in Carbon‐Based Electrodes for Energy Storage and Conversion

Author:

Kothandam Gopalakrishnan1,Singh Gurwinder1,Guan Xinwei1,Lee Jang Mee1,Ramadass Kavitha1,Joseph Stalin1,Benzigar Mercy1,Karakoti Ajay1,Yi Jiabao1,Kumar Prashant1,Vinu Ajayan1ORCID

Affiliation:

1. Global Innovative Centre for Advanced Nanomaterials (GICAN) College of Engineering, Science and Environment (CESE) The University of Newcastle Callaghan NSW 2308 Australia

Abstract

AbstractCarbon‐based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next‐generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state‐of‐the‐art overview of these advanced carbon‐based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium‐ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter‐layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon‐based electrodes in energy storage and conversion.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3