Affiliation:
1. Global Innovative Centre for Advanced Nanomaterials (GICAN) College of Engineering, Science and Environment (CESE) The University of Newcastle Callaghan NSW 2308 Australia
Abstract
AbstractCarbon‐based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next‐generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state‐of‐the‐art overview of these advanced carbon‐based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium‐ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter‐layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon‐based electrodes in energy storage and conversion.
Funder
Australian Research Council
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献