High‐Performance Ambipolar and n‐Type Emissive Semiconductors Based on Perfluorophenyl‐Substituted Perylene and Anthracene

Author:

Chen Liangliang12,Qin Zhengsheng12,Huang Han3,Zhang Jing12,Yin Zheng12,Yu Xiaobo12,Zhang Xi‐sha12,Li Cheng1,Zhang Guanxin1,Huang Miaofei12,Dong Huanli1,Yi Yuanping1,Jiang Lang1,Fu Hongbing3,Zhang Deqing12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 P. R. China

Abstract

AbstractEmissive organic semiconductors are highly demanding for organic light‐emitting transistors (OLETs) and electrically pumped organic lasers (EPOLs). However, it remains a great challenge to obtain organic semiconductors with high carrier mobility and high photoluminescence quantum yield simultaneously. Here, a new design strategy is reported for highly emissive ambipolar and even n‐type semiconductors by introducing perfluorophenyl groups into polycyclic aromatic hydrocarbons such as perylene and anthracene. The results reveal that 3,9‐diperfluorophenyl perylene (5FDPP) exhibits the ambipolar semiconducting property with hole and electron mobilities up to 0.12 and 1.89 cm2 V−1 s−1, and a photoluminescence quantum yield of 55%. One of the crystal forms of 5FDPA exhibits blue emission with an emission quantum yield of 52% and simultaneously shows the n‐type semiconducting property with an electron mobility up to 2.65 cm2 V−1 s−1, which is the highest value among the reported organic emissive n‐type semiconductors. Furthermore, crystals of 5FDPP are utilized to fabricate OLETs by using Ag as source–drain electrodes. The electroluminescence is detected in the transporting channels with an external quantum efficiency (EQE) of up to 2.2%, and the current density is up to 145 kA cm−2, which are among the highest values for single‐component OLETs with symmetric electrodes.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3