SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology

Author:

Mühlberg Alexander1ORCID,Ritter Paul12,Langer Simon3,Goossens Chloë4,Nübler Stefanie1,Schneidereit Dominik12,Taubmann Oliver3,Denzinger Felix3,Nörenberg Dominik5,Haug Michael1,Schürmann Sebastian1,Horstmeyer Roarke6,Maier Andreas K.3,Goldmann Wolfgang H.7,Friedrich Oliver12,Kreiss Lucas126

Affiliation:

1. Institute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen Germany

2. Erlangen Graduate School in Advanced Optical Technologies Paul‐Gordan‐Str. 6 91052 Erlangen Germany

3. Pattern Recognition Lab Department of Computer Science Friedrich‐Alexander University Erlangen‐Nuremberg Martensstr. 3 91058 Erlangen Germany

4. Clinical Division and Laboratory of Intensive Care Medicine KU Leuven UZ Herestraat 49 – P.O. box 7003 Leuven 3000 Belgium

5. Department of Radiology and Nuclear Medicine University Medical Center Mannheim Medical Faculty Mannheim Theodor‐Kutzer‐Ufer 1–3 68167 Mannheim Germany

6. Computational Optics Lab Department of Biomedical Engineering Duke University 101 Science Dr Durham NC 27708 USA

7. Biophysics Group Department of Physics Friedrich‐Alexander University Erlangen‐Nuremberg Henkestr. 91 91052 Erlangen Germany

Abstract

AbstractDeep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3