Defective Lamtor5 Leads to Autoimmunity by Deregulating v‐ATPase and Lysosomal Acidification

Author:

Zhang Wei1ORCID,Sha Zhou1,Tang Yunzhe1,Jin Cuiyuan2,Gao Wenhua1,Chen Changmai3,Yu Lang1,Lv Nianyin1,Liu Shijia4,Xu Feng5,Wang Dandan6,Shi Liyun12ORCID

Affiliation:

1. School of Medicine Nanjing University of Chinese Medicine Nanjing 210046 China

2. Key lab of Artificial Organs and Computational Medicine Institute of Translational Medicine Zhejiang Shuren University Hangzhou 310022 China

3. School of Pharmacy Fujian Medical University Fuzhou 350122 China

4. The Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China

5. Department of Infectious Diseases The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310009 China

6. Department of Rheumatology and Immunology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210093 China

Abstract

AbstractDespite accumulating evidence linking defective lysosome function with autoimmune diseases, how the catabolic machinery is regulated to maintain immune homeostasis remains unknown. Late endosomal/lysosomal adaptor, MAPK and mTOR activator 5 (Lamtor5) is a subunit of the Ragulator mediating mechanistic target of rapamycin complex 1 (mTORC1) activation in response to amino acids, but its action mode and physiological role are still unclear. Here it is demonstrated that Lamtor5 level is markedly decreased in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE). In parallel, the mice with myeloid Lamtor5 ablation developed SLE‐like manifestation. Impaired lysosomal function and aberrant activation of mTORC1 are evidenced in Lamtor5 deficient macrophages and PBMCs of SLE patients, accompanied by blunted autolysosomal pathway and undesirable inflammatory responses. Mechanistically, it is shown that Lamtor5 is physically associated with ATP6V1A, an essential subunit of vacuolar H+‐ATPase (v‐ATPase), and promoted the V0/V1 holoenzyme assembly to facilitate lysosome acidification. The binding of Lamtor5 to v‐ATPase affected the lysosomal tethering of Rag GTPase and weakened its interaction with mTORC1 for activation. Overall, Lamtor5 is identified as a critical factor for immune homeostasis by intergrading v‐ATPase activity, lysosome function, and mTOR pathway. The findings provide a potential therapeutic target for SLE and/or other autoimmune diseases.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3