2,4‐Dihydroxybenzoic Acid, a Novel SA Derivative, Controls Plant Immunity via UGT95B17‐Mediated Glucosylation: A Case Study in Camellia Sinensis

Author:

Lu Mengqian1,Zhao Yifan1,Feng Yingying1,Tang Xiaoyan1,Zhao Wei1,Yu Keke1,Pan Yuting1,Wang Qiang1,Cui Jilai12,Zhang Mengting1,Jin Jieyang1,Wang Jingming1,Zhao Mingyue1,Schwab Wilfried13,Song Chuankui1ORCID

Affiliation:

1. State Key Laboratory of Tea Plant Biology and Utilization International Joint Laboratory on Tea Chemistry and Health Effects Anhui Agricultural University Hefei Anhui 230036 P. R. China

2. Key Laboratory of Tea Plant Biology of Henan Province College of Life Science Xinyang Normal University 237 Nanhu R. Xinyang Henan 464000 P. R. China

3. Biotechnology of Natural Products Technische Universität München Liesel‐Beckmann‐Str. 1 85354 Freising Germany

Abstract

AbstractThe plant hormone salicylic acid (SA) plays critical roles in plant innate immunity. Several SA derivatives and associated modification are identified, whereas the range and modes of action of SA‐related metabolites remain elusive. Here, the study discovered 2,4‐dihydroxybenzoic acid (2,4‐DHBA) and its glycosylated form as native SA derivatives in plants whose accumulation is largely induced by SA application and Ps. camelliae‐sinensis (Pcs) infection. CsSH1, a 4/5‐hydroxylase, catalyzes the hydroxylation of SA to 2,4‐DHBA, and UDP‐glucosyltransferase UGT95B17 catalyzes the formation of 2,4‐DHBA glucoside. Down‐regulation reduced the accumulation of 2,4‐DHBA glucosides and enhanced the sensitivity of tea plants to Pcs. Conversely, overexpression of UGT95B17 increased plant disease resistance. The exogenous application of 2,4‐DHBA and 2,5‐DHBA, as well as the accumulation of DHBA and plant resistance comparison, indicate that 2,4‐DHBA functions as a potentially bioactive molecule and is stored mainly as a glucose conjugate in tea plants, differs from the mechanism described in Arabidopsis. When 2,4‐DHBA is applied exogenously, UGT95B17‐silenced tea plants accumulated more 2,4‐DHBA than SA and showed induced resistance to Pcs infection. These results indicate that 2,4‐DHBA glucosylation positively regulates disease resistance and highlight the role of 2,4‐DHBA as potentially bioactive molecule in the establishment of basal resistance in tea plants.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3