A Complementary Dual‐Mode Ion‐Electron Conductive Hydrogel Enables Sustained Conductivity for Prolonged Electroencephalogram Recording

Author:

Su Hengjie1,Mao Linna1ORCID,Chen Xiaoqi12,Liu Peishuai1,Pu Jiangbo1,Mao Zhuo1,Fujiwara Tomoko3,Ma Yue1,Mao Xinyang4,Li Ting1ORCID

Affiliation:

1. Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China

2. Department of Biomedical Engineering Tiangong University Tianjin 300187 China

3. Department of Chemistry The University of Memphis Memphis TN 38152 USA

4. Department of Biomedical Engineering Tianjin Medical University Tianjin 301700 China

Abstract

AbstractConductive gel interface materials are widely employed as reliable agents for electroencephalogram (EEG) recording. However, prolonged EEG recording poses challenges in maintaining stable and efficient capture due to inevitable evaporation in hydrogels, which restricts sustained high conductivity. This study introduces a novel ion‐electron dual‐mode conductive hydrogel synthesized through a cost‐effective and streamlined process. By embedding graphite nanoparticles into ionic hyaluronic acid (HAGN), the hydrogel maintains higher conductivity for over 72 h, outperforming commercial gels. Additionally, it exhibits superior low skin contact impedance, considerable electrochemical capability, and excellent tensile and adhesion performance in both dry and wet conditions. The biocompatibility of the HAGN hydrogel, verified through in vitro cell viability assays and in vivo skin irritation tests, underscores its suitability for prolonged skin contact without eliciting adverse reactions. Furthermore, in vivo EEG tests confirm the HAGN hydrogel's capability to provide high‐fidelity signal acquisition across multiple EEG protocols. The HAGN hydrogel proves to be an effective interface for prolonged high‐quality EEG recording, facilitating high‐performance capture and classification of evoked potentials, thereby providing a reliable conductive medium for EEG‐based systems.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3