Enzymolysis Modes Trigger Diversity in Inhibitor‐α‐Amylase Aggregating Behaviors and Activity Inhibition: A New Insight Into Enzyme Inhibition

Author:

Cao Junwei1,Zhang Jifan1,Cao Ruibo1,Zhang Bin2,Miao Ming3,Liu Xuebo1,Sun Lijun1ORCID

Affiliation:

1. College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China

2. School of Food Science and Engineering South China University of Technology Guangzhou 510640 China

3. State Key Laboratory of Food Science and Resources Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China

Abstract

AbstractInhibitors of α‐amylase have been developed to regulate postprandial blood glucose fluctuation. The enzyme inhibition arises from direct or indirect inhibitor‐enzyme interactions, depending on inhibitor structures. However, an ignored factor, substrate, may also influence or even decide the enzyme inhibition. In this work, it is innovatively found that the difference in substrate enzymolysis modes, i.e., structural composition and concentration of α‐1,4‐glucosidic bonds, triggers the diversity in inhibitor‐enzyme aggregating behaviors and α‐amylase inhibition. For competitive inhibition, there exists an equilibrium between α‐amylase‐substrate catalytic affinity and inhibitor‐α‐amylase binding affinity; therefore, a higher enzymolysis affinity and concentration of α‐1,4‐glucosidic structures interferes the balance, unfavoring inhibitor‐enzyme aggregate formation and thus weakening α‐amylase inhibition. For uncompetitive inhibition, the presence of macromolecular starch is necessary instead of micromolecular GalG2CNP, which not only binds with active site but with an assistant flexible loop (involving Gly304‐Gly309) near the site. Hence, the refined enzyme structure due to the molecular flexibility more likely favors the inhibitor binding with the non‐active loop, forming an inhibitor‐enzyme‐starch ternary aggregate. Conclusively, this study provides a novel insight into the evaluation of α‐amylase inhibition regarding the participating role of substrate in inhibitor‐enzyme aggregating interactions, emphasizing the selection of appropriate substrates in the development and screening of α‐amylase inhibitors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3